Function of the epaxial muscles in walking, trotting and galloping dogs: implications for the evolution of epaxial muscle function in tetrapods.
نویسندگان
چکیده
The body axis plays a central role in tetrapod locomotion. It contributes to the work of locomotion, provides the foundation for the production of mechanical work by the limbs, is central to the control of body posture, and integrates limb and trunk actions. The epaxial muscles of mammals have been suggested to mobilize and globally stabilize the trunk, but the timing and the degree to which they serve a particular function likely depend on the gait and the vertebral level. To increase our understanding of their function, we recorded the activity of the m. multifidus lumborum and the m. longissimus thoracis et lumborum at three cranio-caudal levels in dogs while they walked, trotted and galloped. The level of muscle recruitment was significantly higher during trotting than during walking, but was similar during trotting and galloping. During walking, epaxial muscle activity is appropriate to produce lateral bending and resist long-axis torsion of the trunk and forces produced by extrinsic limb muscles. During trotting, they also stabilize the trunk in the sagittal plane against the inertia of the center of mass. Muscle recruitment during galloping is consistent with the production of sagittal extension. The sequential activation along the trunk during walking and galloping is in accord with the previously observed traveling waves of lateral and sagittal bending, respectively, while synchronized activity during trotting is consistent with a standing wave of trunk bending. Thus, the cranio-caudal recruitment patterns observed in dogs resemble plesiomorphic motor patterns of tetrapods. In contrast to other tetrapods, mammals display bilateral activity during symmetrical gaits that provides increased sagittal stability and is related to the evolution of a parasagittal limb posture and greater sagittal mobility.
منابع مشابه
Epaxial muscle function in trotting dogs.
One of the features that distinguish mammals from other groups of terrestrial vertebrates is the structure and relative size of their epaxial muscles. Yet we have only a superficial understanding of the role these muscles play in locomotion. To address their locomotor function, we recorded the electrical activity of the iliocostalis, longissimus dorsi and multifidus muscles of trotting dogs. Ac...
متن کاملFunction of the epaxial muscles during trotting.
In mammals, the epaxial muscles are believed to stabilize the trunk during walking and trotting because the timing of their activity is not appropriate to produce bending of the trunk. To test whether this is indeed the case, we recorded the activity of the m. multifidus lumborum and the m. longissimus thoracis et lumborum at three different sites along the trunk (T13, L3, L6) as we manipulated...
متن کاملEpaxial muscle function during locomotion in a lizard (Varanus salvator) and the proposal of a key innovation in the vertebrate axial musculoskeletal system
The pattern of electromyographic activity in the epaxial muscles of walking and running lizards (water monitors, Varanus salvator) was quantified with high-speed video and synchronized electromyography. Muscle denervation experiments were performed and ground reaction forces were recorded to evaluate hypotheses of muscle function. Water monitors exhibit unilateral, uniphasic activation of the e...
متن کاملAxial muscle function during lizard locomotion
It was recently reported that the epaxial muscles of a lizard, Varanus salvator, function to stabilize the trunk during locomotion, and it was suggested that this stabilizing role may be a shared derived feature of amniotes. This result was unexpected because it had previously been assumed that the epaxial muscles of lizards function to produce lateral bending during locomotion and that only in...
متن کاملPatterns of strain and activation in the thigh muscles of goats across gaits during level locomotion.
Unlike homologous muscles in many vertebrates, which appear to function similarly during a particular mode of locomotion (e.g. red muscle in swimming fish, pectoralis muscle in flying birds, limb extensors in jumping and swimming frogs), a major knee extensor in mammalian quadrupeds, the vastus lateralis, appears to operate differently in different species studied to date. In rats, the vastus u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 9 شماره
صفحات -
تاریخ انتشار 2010